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Abstract


The complementary learning systems (CLS; McClelland, McNaughton & O’Reilly, 1995) model of human memory is used to explore how context change (i.e., changing the context in which items are presented between study and test) affects recognition memory; some extant studies have found context change effects for recognition sensitivity (Murnane et al, 1999) but others have not (e.g., Dodson & Shimamura, 2000). 

The CLS model posits that two structures contribute to recognition: a hippocampal network that supports recollection of specific details, and a cortical network that supports judgments of general stimulus familiarity. A neural network implementation of the CLS model was used to simulate context change effects. These simulations showed that hippocampal recollection of item features is adversely affected by context change, so long as there is a balance between item and context information; in contrast, recognition discrimination based on cortical familiarity is unaffected by context change. These results suggest that failure to obtain context change effects may be attributable to a lack of balance between item and context information.  We contrast the CLS model's account with other theories of how context change affects recognition, and propose experiments to test the CLS model's account. We also show how the same model that we use to account for context change effects on recognition can also account for data on how context change affects recall of contextual information (Dodson & Shimamura, 2000).

Introduction
Any stimulus that is encoded occurs within a context, which is defined as the set of details and features that are present in the environment along with the stimulus. A fundamental question is how, and to what extent, items become associated with the context in which they are presented.  One common paradigm for addressing this issue involves presenting a set of items in one context at study, and having a memory test in either the same or a different context, to determine the conditions under which a context change will harm memory for the items.  While clear context effects have been seen in tests involving free and cued recall (Smith, 1988; but see Fernandez & Glenberg, 1985), they have been more difficult to produce in tests of recognition memory (Smith, 1988; Murnane & Phelps 1993, 1994, 1995).  In this research we use the complementary learning systems (CLS) model of human memory to investigate context change effects in recognition memory. 

The CLS framework was established to provide a mechanistic model of the processes underlying human memory (McClelland, McNaughton & O’Reilly, 1995).  In a recent paper (Norman & O’Reilly, in press), a connectionist implementation of the CLS framework was used to describe hippocampal and medial temporal lobe cortex (MTLC) contributions to recognition memory.  It was shown that the hippocampal portion of the model can support detailed recall, forming a memory trace that associates disparate types of environmental information.  As such, it is expected to show some sensitivity to the context an item appeared in, as that context forms part of the memory trace.  Behavioral data support this claim (Dodson & Shimamura, 2000).  It was also shown that MTLC can only support general judgments of stimulus familiarity, not recollection.  Empirical evidence (Vargha-Khadem et al, 1997; Yonelinas, 2002) indicates that MTLC can only support association of items processed within a single cortical area, so we do not expect this system to show context sensitivity.


CLS suggests that the hippocampal system contributes during recognition memory and is sensitive to context manipulations.  However, there are situations in which, despite hippocampal involvement, a change in context from study to test does not result in a decrease in recognition sensitivity.  The challenge is to explain the lack of context effects in recognition memory with a persistently active, context-sensitive system.  This absence of context effects on item recognition is most striking in Dodson and Shimamura (2000): on the same memory test they found a context change effect for recall of context information, but a null context change effect for recognition sensitivity.


The computational model defines conditions in which hippocampus, despite its general context sensitivity, will not show a context change effect.  The size of the hippocampal context effect is shown to vary with the relative amount of attention given to item and context information, which can help explain why these effects are seen in some studies, but not others.  A number of distinctive and testable predictions are made regarding manipulations that should increase the size of context change effects.
Materials & Methods

Overview.  The MTLC and hippocampal models were implemented with the PDP++ software, in the leabra framework.  The two models are more thoroughly described in a number of other publications.  Here we present the details of the model necessary to understand these results, and refer the reader to these other publications for a more thorough description of the model.  (Norman & O’Reilly, in press; O’Reilly & Rudy, 2001; O’Reilly & Munakata, 2000).  Other computational models of hippocampal function have been proposed, with varying degrees of similarity to the architecture used and the behavioral data simulated (a hippocampal model that also examines recognition memory is described in Hasselmo & Wyble, 1997; other hippocampal models with similar principles are described in Levy, 1996; Lörincz & Buzsáki, 2000; Rolls & Treves, 1998).

The behavioral paradigms.  We introduce two behavioral paradigms that investigate item recognition and context recall.  In what is known as the AB-A paradigm,  subjects study a list of items, each of which is presented in one of two contexts.  Each item is presented once.  A testing session follows, in which studied items must be distinguished from lures which were not seen at study.  During the testing session, items are presented either in the proper learned context or the other learned context; lures can be presented in either of the learned contexts.  Subjects are asked to report whether the test item is “old” (a studied item) or “new” (a lure item).  If the item is determined to be “old”, subjects are then asked to report the original context in which the item was presented.  A variation of this is known as the AB-X paradigm, which differs from the AB-A paradigm in one significant way.  During test, studied items are presented either in the same context as study or in a novel context that was not seen during the study period;  lures may appear in either of the learned contexts, or in the novel context.  All other methodological details remain the same.

The MTLC model

Architecture.  The general architecture of the MTLC model is depicted in Figure 1.   The model consists of two layers, each consisting of 240 units.  The units of the Input layer are grouped into sets of ten; each set is called a slot.  Slots correspond to feature dimensions (e.g. color, shape, texture); units within a slot can be viewed as individual features along that dimension (e.g. blue, green, red).  Each unit in a slot corresponds to a feature or set of features in the environment.  Each unit in the MTLC layer receives connections from a random subset (25%) of the units in the Input layer.  Figure 1 depicts a hypothetical set of connections from the first unit of the Input layer.  The connections from the Input layer to MTLC are divided into channels; a given unit only projects to units that are in the same channel. Each channel represents information processed in distinct cortical areas that is not ‘mixed’ in MTLC.  Input and MTLC are divided into three channels: item, context, and experimental context.  Item units only project to other item units, and context units only project to other context units.  A variable number of slots were used to represent the item information, but this value was held constant during any given simulation (the number of item slots varied from 3 to 18).  Another set of slots represented the context information; the number of item slots and context slots was constrained to sum to 22, thus, if there were 3 item slots, there were 19 context slots.  A third set of slots represented the experimental context, the context common to all events in the experiment.  In all simulations the experimental context consisted of two slots.  The presence of these slots does not figure into the explanations of the relevant phenomena and they are not discussed again.  
Dynamics.  In the Input layer, each slot has a local inhibitory rule that allows only one of the ten to be active at a time.  Activity in the second layer is controlled with a k-winner-take-all (kWTA) system, whereby the net activation of each unit is calculated, and the k most active units are allowed to remain active; the rest of the units are turned to zero.  In the second layer of the model, 10% of the units are allowed to be active at any given time (k=24).


The derivation of the familiarity signal.  Every time an MTLC unit wins the kWTA competition, Hebbian weight change increments the weights between it and all active units in the Input layer.  Thus, when the a stimulus appears in the environment a second time, it more effectively activates the same set of units.  On successive presentations of a stimulus, the sum of the activity of the units in the second layer grows (referred to as ‘sharpening’ of the representation).  This provides a simple means of determining prior occurrence, in line with signal detection theory.  A familiarity value for a given item is calculated by determining the most active unit in each slot (the ‘winners’), and taking the mean of the activity of all the winners.  Previously seen items will produce one distribution of familiarity values, and lures will produce a slightly lower distribution.  By setting a threshold at an intermediate value, one can report whether an item has been seen before.  Threshold was set at a value halfway between the mean MTLC activation for all items, and the mean MTLC activation for all lures, allowing the model to produce an “old” or “new” response for each stimulus presented at test. 


Training and testing.  The training and testing of the two models are described together below (in Training and testing the models).

The hippocampal model

Architecture.  The general structure of the hippocampal model is shown in Figure 2: each of the 5 layers (EC-in, EC-out, DG, CA1, CA3) is represented by a rectangle, and connections between the layers are represented by arrows.  EC-in and EC-out contain slotted structures identical to the Input layer of the MTLC model.  See the appendices of Norman & O’Reilly (in press) for a description of the algorithm details, the model details, and the basic parameters used.

Dynamics.  The basic operations of the model can be summarized as follows.  Pattern separation: the model creates a distinctive hippocampal representation for each cortical pattern presented in the input layer.  Binding:  The connections between the units comprising the hippocampal representation are strengthened, as well as the connections between the hippocampal representation and the cortical representation.  This serves two purposes.  Pattern completion: a partial version of the original pattern will activate some portion of the units comprising the hippocampal representation.  The strengthened connections between these units will allow the full representation to be reactivated.  Reinstatement: a reactivated hippocampal representation can cause reinstatement of the original cortical pattern that gave rise to it. 

The operations described above are now briefly mapped onto the structures shown in Fig. 2.  Activity in each layer of the model is controlled by a kWTA-style inhibitory process, similar to that described for the MTLC model.  Stimuli appear in EC-in.  The units of EC-in project to both DG and CA3; the representation that ends up in CA3 undergoes patterns separation due to the divergent character of these weights.  The pattern that is activated in area CA3 is linked back to EC through connections with area CA1.  Hebbian learning takes place on the within-CA3 weights, on the CA3-CA1 weights, and on the perforant path weights (EC-in to DG and EC-in to CA3).  The strengthened set of within-CA3 weights supports pattern completion.  The strengthened set of CA3-CA1 weights supports reinstatement of patterns in EC-out.  

Applying the hippocampal model to item recognition.  During item recognition units are activated in EC-out that represent recalled details.  The number of mismatching details (units on in the output layer of EC that do not match those present in the input layer) is subtracted from the number of matching details; the resulting number is compared to a threshold.  If the threshold is exceeded, the item is reported as “old”; otherwise the item is reported as “new”.  During the item recognition judgment only the details present in the item channel are considered while making the match/mismatch calculation.  Context details are ignored for the item recognition judgment because they are often non-diagnostic of prior occurrence, as is discussed further below.  

Applying the hippocampal model to context recall.  During standard context recall paradigms, subjects are informed that during testing the context in the environment may not be the same as the one seen during testing.  Thus, they are not performing a recognition judgment, rather, they must try to recall the original context seen at study.  Retrieved details are compared to a template for each context, using the same match minus mismatch operation as described above; the context that receives a larger score is the response given.  However, if both scores are below zero, the model gives a “don’t know” response, in which neither context is chosen.

Analysis of CA3 codes.  We perform a cosine comparison on the patterns in area CA3 of the model to determine the effect of various parameter manipulations on the network’s event representations.  The activity in area CA3 can be considered as a vector of length 480.  The cosine of the angle between the vectors corresponding to different items can be taken as a measure of the similarity of the representations of those items.  A cosine value of one means that two vectors are identical, while a cosine value of zero means that two vectors are orthogonal – that they have no features in common.  By averaging the cosines of all events we obtain a measure of the average event similarity.

Two cosine similarity measures were used in the present analysis.  The first measured the average similarity of all representations associated with one of the learned contexts and was called the ‘within’ similarity.  Each CA3 representation was compared to each other CA3 representation for a given context (for example, 10 items were associated with context 1, resulting in 10 factorial cosine comparisons being calculated, and averaged together).  The second measure examined the similarity between the CA3 representation for a given item presented in its learned context, and the same item presented in the other (mismatching) context.  This was called the ‘mismatch’ similarity.  Twenty similarity values were calculated (one for each item) and averaged together.

The training environment.  In the current set of simulations, the model was presented with twenty items, half in Context A, half in Context B.  Each item was presented once.  Input patterns (studied items as well as lures) were created by altering a prototype.  Each pattern was created by taking the prototype and replacing 2/3 of its features with randomly selected features.  Thus there was some similarity among the set of patterns used during training and testing.

Training and testing the models.  The models were run in a paradigm that tested both item recognition and context memory.  The procedure is similar to those described in Murnane & Phelps (1994, 1995, 1999), Dodson and Shimamura (2000) and Macken (2002), all of whom studied context effects on recognition memory.  The creation of the input environment is described above.  During training, the learning rate was set to 0.02, and the twenty items were presented.  The models were tested in two conditions, corresponding to the AB-A and AB-X paradigms described above.  During testing of AB-A, the learning rate was set to 0 and a number of events were presented.  First, all twenty items were presented with the same context as during learning (the matching context).  Then all twenty items were presented in the opposite context as during learning (the mismatching context).  To simulate the AB-X paradigm, a further testing session followed in which the twenty items were presented in a context not seen during learning (the novel context).  A set of twenty never-before-seen items (the lures) were then presented twice each, in two different contexts: the familiar contexts presented during learning and the novel context just described.

The MTLC model generated a set of familiarity scores for each item presented, and the hippocampal model generated a set of recall scores.  These were used to determine hit rate, false alarm rate, and sensitivity measures (d' = z(H) - z(FA)).  To simulate a number of subjects, a new set of input patterns was created and the weights of the network were reinitialized.  The hippocampal model was run 50 times for each set of parameters, while the MTLC model was run 200 times.   

Results 

Precis – a summary of the major results simulated by the hippocampal and MTLC models.

· The hippocampal model only shows a context change effect when there is a balance of item and context information in EC-in.  When item information is weak, the absence of a context change effect is explained by overall poor performance on item recognition (i.e., a floor effect).  When item information is strong, the absence of a context change effect is due to a CA3 representation that is largely independent of context.

· The hippocampal model can recall context information associated with studied items even when its ability to recall distinctive item features is at floor.

· Context recall can be non-diagnostic of prior occurrence in the hippocampal model, as seen in the high rate of context recall triggered by lures in certain conditions.

· The MTLC model is insensitive to the AB-A manipulation (presentation of items in a mismatching context).

· Context recall and item recognition in the hippocampal model are best when an item is presented in a matching context, slightly worse when an item is presented in a novel context (AB-X), and worst when an item is presented in a mismatching context (AB-A).  match > novel > mismatch.

· The MTLC model is sensitive to the AB-X manipulation (presentation of items in a novel context).  The model shows a decrease in both hits and false alarms in this case.

The hippocampal model in the AB-A paradigm.  The models were tested in matching and mismatching contexts (see Methods).  The performance of the hippocampal model is depicted in Figure 3, as the number of item slots is varied.  As mentioned above, the total number of item slots and context slots was constrained to sum to 22, so as the number of item slots rises, the number of context slots falls.  

Figure 3 examines item recognition and context recall performance in the model; we focus on responding to studied items, and responding to lures will be discussed below. As the relative strength of item information increases, the hippocampal model performs better on item recognition (blue line, Fig. 3).  The explanation for this is simple: as more distinctive item information is present in EC-in during training, the CA3 representation for each event overlaps less with other events in memory; thus, there is less interference between memory representations.  Figure 4 (blue line) shows the context change effect on item recognition.  The effect is u-shaped – there is a null context change effect on both sides of the graph.  The null context change effect with low levels of item information is due to a floor effect – the model is not retrieving any item information, so item recognition cannot suffer from a change in context.  The null context change effect with large levels of item information is due to event representations in CA3 that are not strongly influenced by context information (see Fig. 10 and discussion).  In this regime, when an item is presented in a mismatching context, its CA3 representation is very similar to when it is presented in a matching context, so only a small decrease in performance is seen.  Figure 8 shows this graphically (pink line), a cosine comparison is made between the CA3 representation of a given item presented in the matching context and in the mismatching context.  As item information overpowers context information, a change in context does not alter the CA3 representation significantly.  It is only when item and context information are balanced that a large context change effect is seen. 

Performance of the model on context recall is at ceiling for much of the varied range (light green line, fig. 3), only dropping as item information vastly overpowers context information in EC-in.  We found that context recall is considerably more robust than item recognition.  This remarkably rate of correct context recall can be explained by the presence of the appropriate context in the environment during test, coupled with the large number of times the context was seen during training.  The presence of this context at test activates units in CA3 which activate details of the context in EC-out.  The floor performance of the model in the context recall mismatch condition is explained similarly: an inappropriate context is being presented at test, which activates its own devoted CA3 units; these CA3 units activate features of the inappropriate context in EC-out, causing an inappropriate response in the mismatch condition.  The increased robustness of context recall as compared to item recognition cannot be explained in terms of context recall being a forced choice judgment and item recognition being a yes/no judgment; a forced choice format for item recognition would only help marginally as often literally no item features are being recalled.  This point receives further attention in the Discussion section.
Context recall, despite its apparently robust performance, can be non-diagnostic of the prior occurrence of an item.  Figure 5 shows the performance of the hippocampal model to lure items presented with a familiar context.  Lure items can trigger recall that strongly matches one of the contexts, but they hardly ever trigger recall that strongly matches item features; thus, strong recall of context information is not diagnostic of prior occurrence, but strong matching item recall is diagnostic.  We believe that for the model as well as people, recall of features that occurred with high frequency at study can be non-diagnostic of prior occurrence.  A detailed discussion of the roots of this differential performance and the relationship to the empirical literature appears in the next section.

The MTLC model in the AB-A paradigm.  Due to its structure, the MTLC model is insensitive to changes in context at test, as long as the changed context is familiar.  As described above, the MTLC model is divided into channels, with no connections crossing between channels.  Thus, the MTLC separately assesses the familiarity of an item and the familiarity of a context; the two ‘assessments’ are summed to form the familiarity score.  When a familiar item is presented in a familiar context, even if they were not seen together, the summed familiarity score will be as high as in the matching context condition.  This can be seen in Figure 7, in comparing the dark blue and purple lines.  As the strength of item information increases, the sensitivity of the MTLC model increases, as can be seen by the rise in the number of hits and drop in the number of false alarms to lures (Fig. 7, green line).   

The hippocampal model in the AB-X paradigm.  Context recall and item recognition are harmed more by the AB-A manipulation than by the AB-X manipulation.  When studied items and lures are presented in a novel context, item recognition performance is below that seen in the matching condition, but above that seen in the mismatching condition, as is shown in Figure 6.  This finding receives some further discussion in the next section and is in line with behavioral observations (Dodson & Shimamura, 2000).

The MTLC model in the AB-X paradigm.  Figure 7 shows the performance of the MTLC model on studied items and lures in a novel context (light blue and orange lines).  Presenting items in a novel context causes both the number of hits and false alarms to drop; this decrease becomes more pronounced when context information is more powerful than item information.  This drop in familiarity can be explained by the novel context never having been seen before; it has received no sharpening, and will not effectively activate the context channel of the MTLC model.  

Discussion 

The basic context effect.  We begin with an explanation of the context change effect in hippocampus (Fig. 9), that is, why it is more difficult to recognize an item when it is presented in a context different from the one it was learned in.  The size of the context change effect depends on the nature of the context presented at test.  A mismatching test context will cause a large context change effect, as the context is associated with many other items.  A novel context will not cause quite as large a context change effect, as it does not have any strong associations in CA3.  

Item recognition versus context recall.  We determined in Results that the performance of the hippocampal model on context recall is more robust than performance on item recognition; the model also falsely recalls context information when a lure is presented.  Figure 10 describes the differential performance of the model on item recognition and context recall.  When there is a balance between item and context information (Fig. 10a), there is some amount of overlap between all of the CA3 representations associated with a given context, however, there are still many units that are distinct to each representation.  Now consider Figure 10b, where the relative strength of the context information has been enhanced.  This forces the CA3 representations to overlap; each representation now has very few units that distinguish it from the others.  In this case, at test, the network will have more difficulty activating the appropriate item information. Context recall will tend to be spared in this condition, as each of the CA3 representations are associated with the same context.  Thus, although no item details will be reinstated in the output layer, the appropriate context details will be reinstated.  

There is a cost of this loss of distinct information in CA3 – a high level of false recall given a lure.  That is, the “blob” of representations in CA3 (Fig. 10b) associated with one of the contexts can lose any sort of defining structure, and any lure with a feature or two in common with any of the learned items can cause it to activate.  In these situations, the hippocampus can still be used to perform context recall despite a large false recall rate.  Subjects can rely on the MTLC familiarity signal to determine prior occurrence, and, for items classified as old, can then attend to the hippocampal recall signal to determine the context.  

Application to behavioral phenomena.  Now that we have described the dynamics of the model in various paradigms, we can attempt to resolve some findings that seem at first glance to be contradictory.  We believe that the context effect findings (or lack thereof) can be explained by methodological differences between the studies that influence the number of item and context slots in MTLC and hippocampus.  We propose that the number of item slots increases when more attention is paid to item characteristics, and for the context slots as well.  

Dodson & Shimamura.  Dodson and Shimamura (2000) found a null context change effect on item recognition and a significant context change effect on context recall.  They used an incidental memory task, where subjects were asked to rate how easy it was to imagine the voice speaking the word.  We suggest that this shallow encoding task did not cause subjects to pay enough attention to item information, putting subjects towards the left of the performance curve described in Figures 3 & 4.  As described above, this allows subjects to make hippocampally-based context judgments, but forces reliance on the MTLC signal (which, by hypothesis, does not show context change effects) for item recognition.  The other finding was that performance on context recall was greatest in the matching condition, worse in the novel condition, and worst in the mismatching condition.  This pattern of results is replicated by the model, as seen in Figure 6 (and described above).

Murnane & Phelps Simple Visual Context.  Murnane et al (1999) found that when context was a simple visual context (SVC; consisting of a combination of background color, word color and word location), there was no context change effect on item recognition sensitivity.  Macken (2002) replicated their paradigm with the addition of a “remember/know” procedure, (“old” responses were based on recall of specific details, “new” responses were on the basis of familiarity); he found that while there was no context change effect on overall sensitivity, there was a significant context change effect on the “remember” responses.  Murnane et al (1999) presented word pairs on each trial, and asked subjects to form an association between the words; this deep encoding task should increase strength of item representations.  Macken (2002) presented words singly, but subjects were aware of an impending memory test, which likely boosted the amount of attention paid to the items.  As both studies used a SVC, the context was largely incidental, leading to a small number of slots devoted to context.  This puts the model far to the right on the performance curve in Figures 3 & 4.   In this regime, the hippocampus is performing well off of floor, but there is only a small context effect, as the CA3 representation does not include much context information.  We believe that this small hippocampally-based context effect is obscured by the responses made on the basis of the familiarity signal (supported by Macken, 2002).

Murnane & Phelps Rich Visual Context.  Murnane et al (1999) also found that when context was a rich visual context (RVC; a detailed picture of a scene was used, with words appearing on a surface within the scene, for example on a school blackboard)  a context change effect could be found on item recognition.  Subjects were instructed to make active use of the context in forming an association between the two words.  Again, we argue that the association task causes a large number of item slots to be active, and we further posit that the instructions to attend to the context allows there to be a balance between item and context information.  This puts the model in a regime where both item and context information influence the CA3 code, but the CA3 representations are distinct enough to recover item information (consistent with the middle region of the performance curve in Figs. 3 & 4).  The hippocampus performs above floor, and shows a large enough context effect that cannot be obscured by “old” responses based on familiarity.  


Predictions.  This investigation allows us to begin to establish rigorously the set of experimental parameters that affect relative item / context strength, thus causing context change effects.  The model does not need to be altered at all to account for the various results; the shifts through the parameter space of the model are proposed to be driven by shifts in the subject’s attentional state.  Our analysis suggests that the null context effects in Dodson and Shimamura (2000) and Murnane et al (1999) arise for different reasons, and we predict that there are different remedies for each paradigm.  For example, in the Dodson and Shimamura (2002) paradigm, we believe that an item recognition context effect will be found if subjects can be made to attend more to item information, while in Murnane et al (1999) SVC condition subjects should attend more to context information.  Switching these remedies should not help subjects in either paradigm.  Asking subjects to form an association between item and context should force a balance between item and context information, causing a context change effect in both paradigms.


Comparison with existing theories.  Murnane, Phelps and Malmberg (1999) advance the ICE theory to explain their context change effects.  This theory describes memory traces as being composed of item, context and ‘ensemble’ information.  Ensemble information only arises when item and context information are combined or integrated in a unique way; this process is described as an effortful elaboration on existing information.  A context effect on sensitivity is only expected when ensemble information is present, such as in their RVC condition.  In contrast, our theory says that this kind of effortful integration, while useful in fostering context change effects, is not necessary: all the hippocampal system needs is a balance of item and context information, which are then effortlessly integrated.  Manipulations that focus on item information alone, or context information alone, can boost context change effects, as long as they help to foster a balance in the system.  According to Murnane et al’s (1999) theory, these manipulations will not affect the size of the context change effect (they may even reduce the size of the effect, as resources are being diverted from ensemble encoding).  Our explanation of the null context effect in the SVC condition is closer to the outshining hypothesis advanced by Smith (1988); in the SVC condition, item information is so strong that it ‘outshines’ context information.  The contribution of our modeling work is to show that the critical component to finding context change effects in recognition memory is a balance of information: too much, as well as too little, focus on item information can reduce context change effects in hippocampus.

While the CLS model provides a good explanation for the presence and absence of context effects in recognition memory, behavioral testing is needed to confirm the predictions and advance development of the model.

[image: image1..pict]Figure 1.  A schematic representation of the MTLC model.  The model consists of two layers, each comprised of a number of units.  Each unit in the Input layer projects to some set of the units in the MTLC layer.  Here we show a hypothetical set of connections from a single input unit.  Note that the model is divided into channels; a given unit only projects to other units within the same channel.  See Methods for a description of the dynamics of the MTLC model.

Figure 2.[image: image2..pict]  A schematic representation of the hippocampal model.  The model consists of five layers, each of which is made up of a number of units.  Connections between layers are represented as arrows.  The dashed arrow between EC-in and CA1 denotes that this connection is active during training, and inactive during testing.  See Methods for a description of the dynamics of the hippocampal model.

[image: image3..pict]Figure 3.  The performance of the hippocampal model as measured by hit rate to studied items on item recognition and context recall.  Item recognition curves are in blue and red, which represent the matching and mismatching context conditions respectively.  Context recall curves are in light green and dark green, which represent the matching and mismatching context conditions respectively.  All differences between item match and item mismatch, and between context match and context mismatch, are significant at p<.001.

[image: image4..pict]Figure 4.  The AB-A context change effect in the hippocampal model.  The context change effect on item recognition measures the difference in hit rate to studied items between the matching and mismatching context conditions (blue line).  Similarly, the context change effect on context recall measures the difference in correct context recall between the matching and mismatching context conditions (green line).  Item recognition only shows a context change effect when item and context information are balanced in the model.  The small size of the context change effect at the right of the graph could be due to a ceiling effect (see Fig. 3); however, we re-analyzed the simulations using a higher response threshold, bringing performance away from ceiling, and the u-shape of the item recognition context effect curve remained.

[image: image5..pict]Figure 5.  False alarm rates to lure items in the hippocampal model during item recognition are shown with the blue line.  False context recall rates (defined as a false recall of either context) to lure items are shown with the green line.  While item recognition produces relatively few false alarms, context recall produces a tremendous amount of false recall, only beginning to drop when item information gains in strength. 

[image: image6..pict]Figure 6.  A comparison of three context recall conditions examined in the hippocampal model.  The general relationship (match>novel>mismatch) is seen at all item/context strengths.  All differences are significant at the p>.001 level.

[image: image7..pict]Figure 7.  MTLC raw familiarity scores on the AB-A and AB-X tasks.  See Methods for the derivation of familiarity values.  The blue line describes the average familiarity values of the MTLC model to studied items in the matching and mismatching context conditions.  The familiarity values in the two conditions overlapped to such a degree that separate lines were unnecessary (the two lines were not significantly different, p>>0.1).  The red line describes the average familiarity values of the model to lure items presented in a familiar context (the AB-A paradigm).  The green and orange lines depict the familiarity values to studied items and lure items, respectively, in the novel context condition (the AB-X paradigm).  A change to a novel context causes an equivalent decrease in familiarity values to studied items and to lures, resulting in no change in sensitivity.

[image: image8..pict]Figure 8.  Cosine analysis of the CA3 representations in the AB-A paradigm for the hippocampal model.  The blue line (‘within’ similarity, see Methods) is the average similarity of all CA3 representations associated with one of the contexts – as distinctive item information gets stronger, the average similarity between representations decreases.  The pink line (‘mismatch’ similarity, see Methods) is the average similarity of the CA3 representation for each item in the matching context condition and the representation of the same item in the mismatching context condition.  As item information gets stronger, the effect of changing context at test has less effect on the CA3 representation.

[image: image9..pict]Figure 9.  A graphical description of the mismatching context effect.  A stylized version of CA3 is depicted, where each circle is a representation of an event experienced during learning; the more overlap between two circles, the more units the two representations have in common.  Item 1 (I1) was presented during training with context 1 (C1); the two activate a particular representation in area CA3 (designated ().  If at test I1 is presented with C2, a different set of units is activated, here designated representation (.  The size of the resultant context change effect depends on the nature of C2.  If C2 was experienced during learning, the effect will be large, as C2 is associated with many other items; if one of those items is recalled, the hippocampus will fail to recognize I1.  If, on the other hand, C2 is a novel context, then it will not have any strong associations in CA3; any harmful effects on recall will be simply due to the absence of the matching context.

[image: image10..pict]Figure 10.  A graphical description of the advantage of context recall over item recognition.  Two sets of representations in area CA3 are depicted, one set for each context.  For simplicity, we only focus on two of the representations (associated with I1 and I2), both of which are presented with C1 during training.  When there is a balance between item and context information (Fig. 10a), the common presence of C1 causes there to be some amount of overlap between the two representations, however, there are still many units that are distinct to each representation.  Now consider Fig. 10b, where the relative strength of the context information has been enhanced.  This forces the CA3 representations to overlap; each representation now has very few units that distinguish it from the others.  In this case, at test, the network will have more difficulty activating the appropriate item information. Context recall will tend to be spared in this condition, as all of the CA3 representations are associated with C1, which is constant.  Thus, although no item details will be reinstated in the output layer, the appropriate context details will be reinstated.
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